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How do people say a crypto system is 
computationally secure?
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System Y

Many experts put lots of efforts on 
breaking system Y for a very long time.

Still cannot find an 
efficient algorithm for YAfter 50yrs...

Okay, Y is 
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System Y

Many experts put lots of efforts on 
breaking system Y for a very long time.

Still cannot find an 
efficient algorithm for YAfter 50yrs...

Okay, Y is 
secure

Do we really need to wait 50yrs?

SAT

● SAT has already been studied for >50yrs.
● SAT is hard (NP-complete)
● P≠NP (people believe)

Use SAT to show Problem Y is hard.



Show Y is hard by a reduction from SAT: SAT ≤ Y

Algorithm A
(A reduction)

An oracle for Y

Questions Answers

Answer

SAT ≤ Y:
● An efficient algorithm A solving SAT by using an oracle for Y.
● Algorithm A and (Questions, Answers) can be either classical or quantum!  

SAT ≤  Y ⇒ No efficient algorithm can break system Y unless NP = P.  

An instance of SAT
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Consider Y as inverting one-way functions  

● Functions which are easy to compute but hard to invert. 
● A fundamental cryptographic primitive. The existence of one-way functions 

implies
○ Pseudorandom generators
○ Digital signature scheme
○ Message Authentication Codes
○ …….
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● Functions which are easy to compute but hard to invert. 
● A fundamental cryptographic primitive. It implies

○ Pseudorandom generators
○ Digital signature scheme
○ Message Authentication Codes
○ …….

Can inverting one-way functions be as hard as SAT?

● SAT ≤c Inverting a one-way permutation ⇒ PH collapses [Brassard96].
● SAT ≤c Inverting a one-way function ⇒ PH collapses, 

○ when the reductions are non-adaptive[AGGM05] or the functions 
are preimage verifiable[AGGM05, BB15]. 

Only classical reductions are considered!



We are interested in quantum reductions

Hard problems
(e.g., NP-hard problems) 

Computational tasks
(e.g., inverting one-way 

functions)
≤quantum

Do these reductions exist?
10

Algorithm A
(A quantum algorithm)

Problem Y solver
(An oracle for Y)

Answers to SATAn instance of SAT

Quantum messages

Quantum algorithm



Our results
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SAT ≤q Inverting a one-way permutation (Inv-OWP) ⇒ 
coNP ⊆ QIP(2), where
● our result has the restrictions that the reductions are non-adaptive and the 

distribution of the questions to the oracle are not far from the uniform 
distribution.

● It is not known if coNP ⊆ QIP(2). 

● SAT ≤c Inverting a one-way permutation ⇒ coNP ⊆ AM ⇒ PH 
collapses [Brassard96].

● SAT ≤c Inverting a one-way function ⇒ PH collapses, 
○ when the reductions are non-adaptive[BT06] or the functions are 

preimage verifiable[]. 



NP-hard Problems ≤c Inv-OWP⇒ coNP ⊆AM

O 
(An oracle for Inv-OWP)

RO

(The reduction)
x 

RO(x,r,y,f-1(y)) = L(x) 
r

Theorem [Brassad96]:  SAT ≤c Inv-OWP ⇒ coNP ⊆AM ⇒ The 
polynomial hierarchy collapses to the second level.  

The goal is to construct a “constant-round 
protocol” for SAT by using the reduction.  

y f-1(y)
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Arthur-Merlin Protocol

Verifier
(Arthur)

Prover
(Merlin)

r: a random string

c: a proof

x

A(x,r,c)=L(x)
PSPACE

P

NP

AM
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We say L ∈ AM if 

● (completeness) if x∈ L, there is a prover 
(Merlin) can convince Arthur (the verifier) that 
x∈L. 

● (soundness) if x∉ L, no prover (Merlin) can 
convince Arthur that x∈L.

Two classical messages 
exchanged .



SAT ≤c Inv-OWP ⇒ SAT ∈ AM 

O
(An oracle for Inv-OWP)

RO

(The reduction)

x 
RO(x,r) 

r

Prover
(Simulate O)

Verifier
(Verify f(x)=y and apply Ro)

x 

r

r

1-RO(x,r) 

y f-1(y) y,x
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Given the verifier’s 
randomness, the prover 
knows the question 
Arthur wants to ask.

1. The verifier sends his random string to the prover. 
○ The prover knows y after having the random string.

2. The prover sends y and x (where f(x)=y) to the verifier.
○ A malicious prover may send (y’, x’) ≠ (y, x).  

3. The verifier verifies whether y is the question and f(x) = y. If not, reject.
4. The verifier runs the reduction Ro if he doesn’t reject in step 3.  
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Given the verifier’s 
randomness, the prover 
knows the question 
Arthur wants to ask.

1. The verifier sends his random string to the prover. 
○ The prover knows y after having the random string.

2. The prover sends y and x (where f(x)=y) to the verifier.
○ A malicious prover may send (y’, x’) ≠ (y, x).  

3. The verifier verifies whether y is the question and f(x) = y. If not, reject.
4. The verifier runs the reduction Ro if he doesn’t reject in step 3.  

Can we use this protocol for quantum reductions? 



No, quantum reductions are more tricky

Reduction UR
(An efficient quantum 

algorithm)

O
(An oracle for Inv-OWP)

|Q>12 |A>12

UR|x>|A>

Each question can be in superposition

○ |Q>123=∑qcq|q>1|0>2|wq>3 
○ |cq|2 can be viewed as the 

weight of question q.

The answer is also in superposition

○ |A>123=∑qcq|q>1|f
-1(q)>2|wq>3
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Why does the classical protocol fail?

Reduction UR
(An efficient quantum 

algorithm)

O
(An oracle for Inv-OWP)

|Q>12 |A>12

UR|x>|A>

Each question can be in superposition

○ |Q>123=∑qcq|q>1|0>2|wq>3 
○ |cq|2 can be viewed as the 

weight of question q.

The answer is also in superposition

○ |A>123=∑qcq|q>1|f
-1(q)>2|wq>3
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x 

● SImulating the reduction SAT ≤q Inv-OWP only gives 
“quantum interactive proof” protocol. 

● The prover can cheat by giving correct (q,f-1(q)), but 
changing the weight cq. 



Goal: SAT ≤q Inv-OWP ⇒ SAT∈QIP(2)  
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Verifier
(quantum algorithm UA)

Prover
(Applying some operation: 

|Q> ⟶|QH>)

|M1>

|M2>

We say L ∈ QIP(2) if 

● (completeness) if x∈L, the prover can convince the verifier that x∈L. 
● (soundness) if x∉L, no prover can convince the verifier that x∈L.

PSPACE

P

NP

AM

QIP(2)



Goal: SAT ≤q Inv-OWP ⇒ SAT∈QIP(2) under 
uniform quantum reductions  

19

Verifier
(quantum algorithm UA)

Prover
(Applying some operation: 

|Q> ⟶|QH>)

|M1>

|M2>

We say L ∈ QIP(2) if 

● (completeness) if x∈L, the prover can convince the verifier that x∈L. 
● (soundness) if x∉L, no prover can convince the verifier that x∈L.

Uniform quantum reductions: 

● Each query is a uniform superposition
○ |Q>=∑q|q>|0>|wq> 

● The answer is also in uniform superposition
○ |A>=∑|q>|f-1(q)>|wq>

PSPACE

P

NP

AM

QIP(2)



A protocol with “trap”   

VerifierProver

Register M of |Q> or |T>

Register M of |A> or |S>

The real query

The trap
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The main idea: If the prover cheats, he has ½ probability to cheat on the trap 
state. The verifier can catch him by verifying the trap state! 
● The prover cannot distinguish the trap and the real query.
● |S> can be efficiently verified by the verifier.



A protocol with “trap”   

VerifierProver

Register M of |Q> or |T>

Register M of |A> or |S>

1. Send the register M of |Q> or |T> uniformly at 
random.

● |Q>=∑q(|q>|0>)M(|wq>|q>)V     
● |T>=∑q(|q>|0>)M(|0>|q>)V  

The real query

The trap

2. An honest prover will send |A> or |S>.
● |A>=∑q|q>|f-1(q)>|wq>|q>       
● |S>=∑q|q>|f-1(q)>|0>|q> 

3. The verifier does the following.
● In case |Q>:

○ Run the reduction and accept if the 
reduction accepts.

● In case |T>: 
○ Run the unitary U: |S> ⇒ |0> and 

measure the output in the standard 
basis. If the outcome is |0>, accepts.

● |A> ⇒ |0> may not be 
efficient.

● U: |S> ⇒ |0> is efficient. 
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Analysis of the trap protocol

3. The verifier does the following.
● In case |Q>:

○ Run the reduction and accept if the 
reduction accepts.

● In case |T>: 
○ Run the unitary U: |S> ⇒ |0> and 

measure the output in the standard 
basis. If the outcome is |0>, accepts.

VerifierProver

Register M of |Q> or |T>

Register M of |A> or |S>
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● The prover does not know which state he gets. 
● No matter which operator the prover applies, it will

● Change |S> a lot
○ Suppose |S’> is far from |S>. By applying U: |S> ⇒ |0...0>, |S’> is far from |0...0>. 

● Or changes |A> little. 
○ Suppose |A’> ≈ |A>. By applying the reduction, |A’> will be rejected with high probability.   

In these two cases, the verifier rejects with high probability. 

1. Send the register M of |Q> or |T> uniformly at 
random.

● |Q>=∑q(|q>|0>)M(|wq>|q>)V     
● |T>=∑q(|q>|0>)M(|0>|q>)V  



Theorem: SAT≤uq Inv-OWP ⇒ coNP⊆QIP(2).

The result coNP⊆QIP(2) is not as strong as PH collapses, However, it is a 
nontrivial consequence of the existence of quantum reductions.

We can deal with other non-uniform distributions which are not far from 
the uniform distribution by quantum resampling. 
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The “trap” protocol can be easily extended to quantum reductions with 
multiple non-adaptive queries.  



Open questions

● Can we deal with other distributions or adaptive queries?
● We shall revisit other no-go theorems for crypto primitives.

○ For cryptographic primitives which security are not based on 
NP-complete problems under classical reductions, can NP-complete 
problems reduce to them if quantum reductions are allowed?

○ E.g., Private information retrieval (PIR), FHE, Inv-OWF, …
● Can we give more evidences that coNP is not in QIP(2)? 
● Can we find other consequence which is stronger than coNP ⊆ QIP(2)? 

○ E.g., coNP⊆QAM or QMA.
● Can we find a example where we can prove quantum reductions are more 

powerful than classical reductions?
● Generally, people think quantum algorithms make crypto systems less 

computationally secure.  But, maybe it can make crypto systems securer by 
reducing hard problems to these systems.


